
Magnetic susceptibility of a paramagnetic material by Quincke’s 
method 

 
 

Objective 

1. To determine the magnetic susceptibility χ of a given paramagnetic solution for a specific 

concentration. 

2. Calculate mass susceptibility χ, Molar susceptibility χ, Curie constant C and Magnetic 

dipole moment. 

 

Theory 

When a material is placed within a magnetic field, the magnetic forces of the material's 

electrons will be affected. This effect is known as Faraday's Law of Magnetic Induction. 

However, materials can react quite differently to the presence of an external magnetic field. 

This reaction is dependent on a number of factors, such as the atomic and molecular structure 

of the material, and the net magnetic field associated with the atoms. The magnetic moments 

associated with atoms have three origins. These are the electron motion, the change in motion 

caused by an external magnetic field, and the spin of the electrons. In most atoms, electrons 

occur in pairs with spins in opposite directions. These opposite spins cause their magnetic 

fields to cancel each other. Therefore, no net magnetic field exists. Alternately, materials with 

some unpaired electrons will have a net magnetic field and will react more to an external 

field. Most materials can be classified as diamagnetic, paramagnetic or ferromagnetic. 

Although you might expect the determination of electromagnetic quantities such as 

susceptibility to involve only electrical and magnetic measurements, this practical shows how 

very simple measurements of mechanical phenomena, such as the displacement of a liquid 

column can be used instead. Quincke devised a simple method to determine the magnetic 

susceptibility, χ, of a paramagnetic solution by observing how the liquid rises up between the 

two pole pieces of an electromagnet, when a direct current is passed through the 

electromagnet coil windings. A material’s magnetic susceptibility tells us how “susceptible” 

it is to becoming temporarily magnetised by an applied magnetic field and defined as the 

magnetization (M) produced per unit magnetic field (H).  

χ = M/H    (1) 



Consider a paramagnetic medium in the presence of a uniform applied flux density Bo. 

Loosely speaking, paramagnets are materials which are attracted to magnets. They contain 

microscopic magnetic dipoles of magnetic dipole moment m which are randomly oriented. 

However, in the presence of a uniform field B each dipole possesses a magnetic potential 

energy U = −m• B, [1]. So they all tend to align up parallel to B, which is the orientation in 

which their potential energy is minimum (i.e. most negative). Consequently, the liquid, which 

contains many such dipoles, will tend to be drawn into the region of maximum field since this 

will minimize its total magnetic potential energy. In other words, the liquid experiences an 

attractive magnetic force Fm pulling it into the region of strongest field. The dipoles in the 

liquid, FeCl3 solution for this experiment, are due to Fe3+ ions which are paramagnetic in 

their ground-state. The “spins” of several outer electrons are aligned parallel to each other to 

gives rise to a net magnetic moment m which is not compensated by other electrons. 

A region of empty space permeated by a magnetic field H possesses an energy whose density 

(energy per unit volume) is u = ½μoH2 [1], where μo is the magnetic permeability of vacuum. 

In presence of a medium, this magnetic energy density may be written: 
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where μ is the magnetic permeability of the medium and H = |H|. For fields which are not too 

large, the magnetic permeability μ of a paramagnet can be treated as independent of the 

applied field; i.e. it is a “constant”. Note that μ>μo for a paramagnet. The H vector has the 

very useful property that its tangential component is continuous across a boundary, so that the 

value of H in the air above the meniscus is equal to that in the liquid. This is in contrast to the 

flux density, where B0 in air is different (less, in this case) from the value B in the liquid: 
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Suppose that, when the field is turned on, the meniscus in the narrow tube rises by an amount 

h, relative to its zero-field position (see Fig. 1). A volume πr2h of air in the narrow tube (with 

permeability μo) is, therefore, replaced by liquid. Hence, the magnetic potential energy of this 

volume of space increases by an amount: 
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The work done by the upward magnetic force Fm in raising the liquid by an amount h is  
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When the liquid in one arm of the tube rises by h, it falls on the other arm by h. It continues 

to rise till the upward magnetic force is balanced by the weight of the head of liquid. The 

downward gravitational force on the head of liquid, of mass m, is given by 

   hgrmgFg  22    (6) 

where  is the density of the liquid. However, there is also a very small additional upwards 

force on the liquid due to the buoyancy of the air, which, strictly, ought to be included (By 

the Principle of Archimedes, bodies immersed in any fluid, even air, experience this 

buoyancy; you are yourself very slightly lighter by virtue of the surrounding air, though this 

effect is extremely tiny compared to that which you experience when immersed in a much 

denser fluid, such as water). The liquid in the narrow column displaces a volume of air, while 

that in the wide column is replaced by air, and this leads to a net upwards buoyancy force on 

the narrow column given by 

   hgrF ab  22    (7) 

where a is the density of the air. Combining all these forces, we have Fm =Fg -Fb, so that 
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Using Eq. 3 in Eq. 8, we finally obtain the volume susceptibility, which is a dimensionless 

quantity: 
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Where a  is the susceptibility of air. In practice, the corrections due to air are negligible. 

There will also be a small but significant diamagnetic (i.e. negative) contribution to the 

susceptibility mainly due to water. The total susceptibility of the solution is given by χ = χFe 

+ χwater. In the present work you will correct χ to yield the true value of χFe. Some other 

parameters are defined in terms of volume susceptibility as follows: 

Mass Susceptibility is given by:      χ′ = χ/     (10) 

Molar Susceptibility is given by: χ′′ = χ′ M     (11) 

where M= Molecular weight 

Curie constant is given by:  C = χ′′T     (12) 

where T= Temperature of sample 

Magnetic moment  of dipole of the specimen by relation 

            = 2.8241C         (13) 



where  is expressed in Bohr magnetron B with a value of 9.272  10-24 A-m2 

Literature value of molar susceptibility of FeCl3 is +1.69 x 10-8 m3/mol [2]. 

Since the thermal effects tend to destroy the alignment of magnetic dipoles, so the susceptibility 

of a paramagnet decreases as the temperature T is increased. Using statistical mechanics, it may 

be shown that at high temperatures (kT >> mB) the contribution χFe of the paramagnetic Fe3+ ions 

to the volume susceptibility of the solution is given by,  
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where k is Boltzmann's constant and N is the number of Fe3+ ions per unit volume,  p is the 

magneton number defined in Appendix A, μB is the Bohr magneton and m = pμB. The 1/T 

dependence of χMn is known as Curie's Law.  

The above theory assumes that the magnetic field acting on each ion is just the applied field B; 

field and contributions due to neighboring magnetic ions are neglected. For dilute paramagnetic 

materials these other contributions are very small and the approximation is valid. This is not so 

for concentrated magnetic materials and ferromagnets.  

Apparatus: 

1. Adjustable electromagnet with pole pieces  

2. Constant power supply  (0-16 V, 5A DC) 

3. Digital Gauss meter 

4. Hall probe for magnetic strength measurement 

5. Traveling Microscope 

6.  Quincke’s tube (an U tube) 

7. Measuring cylinder (100ml), Pipette (5ml)/dropper, Wash bottle 

8. Specific gravity bottle (25cc) 

9. FeCl3for making solutions 

10. Electronic balance (Least count = 0.01gm) 

11. Connecting cords 

Experimental set-up  

A schematic diagram of Quinck’s method is 

shown in Fig 1. Quinck’s tube is U shaped 

glass tube.  One arm of the tube is placed 

between the pole-pieces of an electromagnet 

shown as N-S such that the meniscus of the 

Fig. 1: Schematics of the set up 



liquid lies symmetrically between N-S. The length of the limb is sufficient as to keep the 

other lower extreme end of this limb well outside the field H of the magnet.  The rise or fall h 

is measured by means of a traveling microscope of least count of the order of 10-3cm. The 

picture of the actual set up is given in Fig. 2. 

  

Procedure 

1. Prepare the FeCl3 solution of known mass (5-10gm) in 50 ml water. 

2. Calculate the number of moles of Fe3+ ions per unit volume of the solution. 1 mole of a 

substance has a weight in grams equal to its molar weight, Wm. The molecular weight is 

found by adding up the atomic weights of the constituent atoms of the molecule. If X 

grams of FeCl3 were dissolved in V m3 of the solution, the number of moles is X/Wm. 

Each mole contains NA (Avagadro’s number) of molecules. Thus the number of 

molecules in V m3 is 

 N = NAX/Wm 

3. Measure the density ρ of your solution using a specific gravity bottle. The method here is 

to (a) weigh the bottle + stopper when it is dry and empty, let it be w1. 

(b) fill it with distilled water and weigh it again, let it be w2. 

(c) dry it with a dryer and fill it with your solution and weigh it again. Let the weight be 

w3 The density ρ may be found, knowing the density of water ρwater, from the following 

equation 
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Fig. 2 Experimental set up for Quincke’s method 



4. Adjust the pole pieces so that the gap between them is about 10 mm (Diameter of the U-

tube is about 8mm).  

5. Connect the electromagnet coils in series to the power supply and ammeter. The field 

between the pole pieces must be calibrated as a function of current over an appropriate 

range (1- 4A). The magnet may run continuously with a current of 5A (for precautions, 

we would avoid prolonged use at 5A, hence the range up to 4A) and for short periods 

with 10A. The Hall probe will be used to measure the magnetic field B (how does this 

work?). Position the Hall probe using the stand provided so that the same position is 

maintained throughout the calibration. With the U-tube removed, insert the Hall probe 

into the field region between the flats of the pole pieces. 

6. Switch on the Gauss meter and rotate the zero adjustment knob till you get zero reading 

on it. Now, switch on the power supply and adjust the current at 1A. Adjust the probe’s 

position and orientation until it registers a maximum positive field. Clamp the probe 

handle firmly in place so that it cannot move. Measure the flux density B. Slowly 

increase the current (I) in small steps and record corresponding values of B. 

7. If you record your calibration data with sufficiently small increments of current this will 

provide the best definition of the entire curve, which will be linear in a certain range for 

smaller values of current and then the slope will decrease as magnetic saturation occurs 

in the material of the pole pieces. Note there may also be some magnetic hysteresis 

present and for a given current, the field may be slightly different, depending on whether 

the current is increasing or decreasing. The magnetic saturation means that the highest 

values of current do not produce an equivalent increase in the values of the magnetic 

field.  

8. Bring the current in the power supply back to zero and switch off supply after you finish 

calibration. 

9. Transfer some of the prepared solution to the U- tube so that the meniscus is at the centre 

of the pole-pieces. Focus the travelling microscope on the meniscus and note down the 

initial reading for B = 0. 

10. Switch on the supply and slowly vary the current up to 4A in steps of 0.5A. The solution 

in the tube rises up. Note down the corresponding height of the liquid column for each 

value of current.   

 

 



Observations 
 
Table 1: Data for calibration 
 
 

Sl# I (A) B (Gauss) 
   

   

 

Table 2: Measurement of  

Wt. of empty specific gravity bottle (w1) = .. 

Wt. of specific gravity bottle filled with distilled water (w2) = .. 

Wt. of specific gravity bottle filled with test liquid (w3) = .. 
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Use water = 1000 kg/m3  

 

Table2. Measurement of h ~ B 

Least count of travelling microscope =  

For B=0, using travelling microscope,  

Initial position of meniscus (a) = Main scale (M.S.) + Vernier Scale (V.S.) 

 

Sl No I B B2 

Meniscus Reading 

B≠0 

(b) 

Difference  

h= (b-a) 

 

M.S V.S T.R.  

         

        

        

 

 
Graph: 
Plot a graph h~B2 and do straight line fitting to determine slope. 
 

Calculations: Use a ~0 and a = 1.29 kg/m3 



Volume susceptibility, 61004.9 water  

Fe = …. Fe ′ = …. Fe ′′ = ….. C = ……  = …. 

 
Conclusion and discussion: 

 

Precautions: 
 
1. Scrupulous cleanliness of the U-tube is essential. Thoroughly clean the tube and rinse it 

well with distilled water before starting and dry it.  

2. Make several sets of measurements to ensure consistency; false readings can arise from 

liquid running down the tube or sticking to the sides.  

3. Carefully swab down the inside of the U- tube with a cotton bud, to ensure that there are 

no droplets of liquid which might interfere with the plastic spacers on the rod which 

measures the height of the meniscus.  

4. Do not use the U-tube for longer than one laboratory period without recleaning. After 

cleaning ask the laboratory technician to dry the tube for you with compressed air.  

5. Try to avoid the backlash error of the travelling microscope. The small change of height 

may cause you more error in the calculation. 
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Appendix A: Magnetic moment values  

The magnetic susceptibility of a substance is related to the magnetic dipole moments of its 

individual atoms or ions. The total angular momentum of an atom or ion arises from both the 

orbital motion and the spin of the electrons. The magnetic dipole moment can be expressed in 

the form  

m = pμB,  

where p, the magneton number, is the dipole moment in units of the quantity μB, which is 

known as the Bohr magneton. The Bohr magneton is the atomic unit of magnetic moment 

defined by,  

μB = eh / 4πme  

where, in this equation, e and me are the electronic charge and mass and h is Planck's 

constant. The dimensionless magneton number p is usually between 1 and 10 for atomic 

systems.  

The rules for calculating p can be summarised as follows,  

(i) the unfilled electron shells for any atom or ion can be found in standard tables.  

(ii) the quantum numbers of the individual electrons can be added  


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isS  

to give the largest values of L and S consistent with the Pauli Exclusion Principle  

(iii) the total quantum number J can be found from  

J = L - S first half of the electron shell  

J = L + S second half of the electron shell  

(iv) the magneton number p is given by,  
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g takes into account that the spin effectively creates twice as much magnetic moment as the 

orbital motion. 



(v) the result of these calculations are tabulated in most textbooks on condensed matter 

physics, See the Table 1. 

 

Table 1 Magneton numbers p for some transition metals (TM2+ free ions) 

 

No of electrons 

in 3d shell 

Ion S L J P 

0 Ca2+ 0 0 0 0 

1 Sc2+ ½ 2 3/2 1.55 

2 Ti2+ 1 3 2 1.63 

3 V2+ 3/2 3 3/2 0.77 

4 Cr2+ 2 2 0 0 

5 Mn2+ 5/2 0 5/2 5.92 

6 Fe2+ 2 2 4 6.71 

7 Fe3+ 5/2 0 5/2 5.92 

8 Co2+ 3/2 3 9/2 6.63 

9 Ni2+ 1 3 4 5.59 

10 Cu2+ ½ 2 5/2 3.55 

11 Zn2+ 0 0 0 0 

 


